Mobile compounding units, a.k.a. sterile compounding trailers

Image owned by Jerry Fahrni, Pharm.D. Taken June 28, 2018

Construction on pharmacy cleanrooms is at an all-time high in California. Every hospital I know is either renovating a sterile compounding area —  cleanroom or SCA — or building a new one. Why? Because of USP General Chapter <800>, of course. Never have I seen so little cost so much. That little 19-page document has sent shock waves throughout the pharmacy world and created more chaos than anything I’ve witnessed in my 20 plus year career. Whether or not the changes called for in the new chapter will improve patient care and worker safety remains to be seen. That’s a blog post for another time.

As pharmacies begin renovating existing sterile compounding areas, or building new ones, there may be a time when they find themselves without a suitable area to make Compounded Sterile Preparations (CSPs). Some pharmacies have the physical space and financial resources to build new sterile compounding areas without vacating their existing space. Others do not.

For those that don’t, there are few options. They can potentially get someone else to handle their CSP production while under construction, or they could give everything an immediate-use BUD. Neither is a great option, but options they are.

Enter the Mobile Sterile Compounding Unit (MSCU) built by Germfree — aka Mobile Compounding Unit (MCU), “Pharmacy Trailer”, “Rx Trailer”, “the trailer” or as the manufacturer likes to call it, “Rental Compounding Trailer”. I prefer MCU.

The MCU is basically a semi-truck trailer with a fully functional pharmacy cleanroom inside. Germfree describes it as a “turnkey rental pharmacy/cleanroom for hospital facility renovations”.  I wouldn’t go as far as to call it turnkey, but it’s close.

The Germfree MCU has three distinct work zones:

1) ISO Class 7/8 anteroom with a small area for personnel to don Personal Protective Equipment (PPE). The area has lockers for storing PPE, a hand washing sink, and a gowning bench.

2) ISO Class 7 Negative Pressure Buffer Room (HD room) with Class II, Type A Biological Safety Cabinets, storage space, and integrated refrigerator and freezer. Preparation areas are all stainless steel.

3) ISO Class 7 Positive Pressure Buffer Room (non-HD room) with Laminar Airflow Workstations, storage and integrated refrigerator and freezer. As with the HD room, preparation areas are stainless steel.

The trailer has a dedicated HVAC system for temperature and humidity control, an auxiliary generator should you require emergency power, on-board fresh water to provide for a sink, a gray water tank to collect water for disposal, data ports for computers and phones, and a host of cameras with a digital video recorder (DVR) for security.

I’ve had the opportunity in my current position to oversee the implementation of a MCU from purchase to fully-operational cleanroom. I’m a few weeks from signing off on the project. Only a bit of regulatory paperwork remains.

During my time with the MCU I’ve formed some opinions, which I present to you here.

Pros:

  • Ready-to-use, sort of. While it takes a little bit of work to get a MCU up and running, they truly are close to being a “turnkey cleanroom”.
  • ISO compliant HD and non-HD buffer rooms. Unlike an SCA, there is no limitation to what can be made in the MCU. It is fully capable of handling any type of CSP.
  • Self-contained, mostly. Once the MCU is tied to water and electricity, pharmacy personnel can work as if they were in any other pharmacy cleanroom.
  • It’s quicker and cheaper than many remodels. I don’t mean to say that MCUs are inexpensive, but I would wager that the cost is less than most major pharmacy remodels or the cost of building a completely new cleanroom.
  • The MCU is nice. Regardless of how you feel about the idea, one thing is for sure, the Germfree MCUs are nice and well-built. Honestly, the HD and non-HD buffer rooms inside the trailer are nicer than many pharmacy cleanrooms I’ve been in. Don’t take my word for it, go visit one yourself.
  • Same hoods that you find in the pharmacy. The same Germfree BZ and BBF hoods you find in pharmacy cleanrooms can be found in the MCU.
  • Lease or buy. Depending on your needs, Germfree offers both.

Cons:

  • One-year maximum use in California. This has nothing to do with Germfree but rather the state I live in. California will only give permission to use these trailers for 12 months. This seems a bit silly to me. Don’t people use trailers as permanent homes? I believe so. As mentioned above, the MCUs from Germfree are nicer than some cleanrooms I’ve been in. Meh, when in Rome…
  • Requires a “flex” or “alternate means of compliance (AMOC)” from state agencies, at least in California. It’s a bit of extra paperwork.
  • Regulatory scrutiny, again California specific. All the state agencies — OSHPD, CDPH, Board of Pharmacy — have taken an aggressive approach to these trailers, which makes getting them up and running a bit of a hassle. Be prepared to do a lot of extra paperwork, including extended policies and procedures, additional trailer-specific training and training, and so on.
  • Requires water, electricity, and internet. This is where calling the trailer self-contained becomes strained. Yes, the trailer has a fresh-water tank and a generator, but those are temporary solutions. Should you need the trailer for an extended period, you will have to find more permanent water and electricity options.
  • Gray water tank. Water used to wash hands has to go somewhere. In this case, it’s a gray water holding tank. Obviously, the tank has to be emptied when it gets full. Depending on how prolific your CSP production is, that could be more than once a week.
  • No restroom. Cross your legs or leave the trailer because there is no bathroom.
  • Customer support/service. I’m sure this will improve over time, but it’s been less than optimal.
  • Limited availability. Apparently, it takes a while to build an MCU, so if you’re in the market for one you should look into it as soon as possible.

Robots in the IV room, still not ready for prime time

I love pharmacy IV room workflow and technology, but I don’t get to talk about it much anymore. Most of my conversations these days are focused on IV room regulation, i.e. compliance with USP <797>/<800> and Board of Pharmacy rules.
So you can imagine my surprise when two people approached me on two completely different occasions at two unrelated events asking my thoughts on IV room technology. Awesome! Then they asked me what I thought about using robots in the IV room. Bummer. Of all IV room technologies, robotics is my least favorite.

Image owned by Jerry Fahrni, Pharm.D. Taken February 12, 2014.

Ten years ago, I was optimistic about IV room robots. Today, not so much. If I could sum up my opinion in one sentence, it would be that highly-automated robotic systems for sterile compounding are not ready for prime time.
Note that I said highly-automated and not fully-automated. Even though robots replace human hands for the actual compounding process, they are dependent on human hands for moving products in and out of the robot before, during, and after the compounding process.
When considering IV robotics, one should always think about:

Patient safety – Can robots reduce CSP errors? Certainly, but so can most any IV room technology that utilizes bar-code scanning, gravimetrics, imaging, etc. Often times people will tout robotic systems for consistently compounding drugs within 5% of the prescribed dose. It’s not really a big deal. Doses slightly outside the 5% range are not clinically significant, and getting it within that range is not important enough by itself to warrant the investment in a robotic system. Given proper guidance and a system for compounding, particularly an IV workflow management system, humans can easily be as accurate.

Worker protection from hazardous drugs (HDs) – There is no question that IV robots have the potential to reduce worker exposure to HDs during the compounding process. Then again, new USP <800> guidelines do the same. Ever heard of a CSTD?

Workflow efficiency – Not sure a robot brings you increased efficiency unless you’re talking about single batch high-volume IV production. I sat for hours watching IV robots doing their thing in pharmacy cleanrooms across the country. I don’t think I ever thought to myself, “dude, that thing sure makes things easier/better”.

Cost reduction from moving outsourced CSPs back in house, i.e. no longer having to purchase CSPs from a third party – Not specific to robots. Perhaps for single batch high-volume IV production, but doubtful.

Reduced waste from discontinued orders falling off work queues before they are filled – Sure, a robot can help with this, but the same is true for almost any IV workflow management system.

Comprehensive documentation for regulatory compliance – These systems certainly collect lots of data but how easy is it to use? Just because the system collects info doesn’t mean you can get it out when you need it. I’ve seen things. Just sayin’.

Return on investment (ROI) – What do these systems give back? There are few pharmacies where IV room robots will result in a positive ROI. I’ve seen pharmacies try. While their arguments may sound good on paper, in practice they are as thin as the paper they are written on. The only time these systems yield a real ROI, in my opinion, is when they are used to repetitively compound the same few items over and over again – in other words, batch compounding for high-volume items. All of the systems have roughly the same throughput, which is much lower than that of a highly skilled technician. IntelliFill i.v. is the fastest of all the robots I’ve seen, but it is limited in scope to syringes.

Formulary limitations – One of the major limitations of IV robots is the number of formulary items they can handle. During visits to facilities using IV robots — San Francisco, CA; Asheville, NC; Baltimore, MD; Madera, CA; and so on — I saw very few medication “line items” assigned to the robot. The largest number I witnessed was somewhere around 10, and the smallest number was two. Two! Someone had a million-dollar robot making CSPs out of two drugs. Hospital formularies are large and diverse. They include all kinds of IV products: piggybacks, large-volume parenterals, syringes, and so on. Not to mention that formularies change all the time. The inability of these systems to manage a large number of different CSPs at one time is definitely a limitation.

Maintenance – What does it cost to maintain these bad boys? They don’t operate on a zero cost. They also don’t maintain themselves. Operational resources required for things like robot maintenance, formulary maintenance, product changes, and so on are important considerations to keep in mind when purchasing a robot. Who is serving who…. or is that who is serving whom? I can never get that right. Anyway, the time, energy, and effort required to keep an IV robot at peak operational efficiency simple isn’t worth it. At least not in my opinion.
In a nutshell, I’m just not a fan of the current crop of IV robots. Does that mean that there is no future for robots in sterile compounding? On the contrary, I think we must move toward a future where all CSPs are made by robots. It’s the only thing that makes sense. Unfortunately, that future is still far off.
I’ve had the opportunity to peak behind the curtains at a few robots currently under development. There are some great products coming down the pike, but we are going to have to wait a while. Apparently, building robots with creative new features is hard.