Tag: Pharmacy Practice

  • Compounding Resource Directory from IJPC

    I received an email yesterday from the International Journal of Pharmaceutical Compounding. The email contains a link to the IJPC’s Compounders’ Resource Directory. There’s a lot of good information on the list. It’s worth a look.

    Both the IJPC and CompoundingToday.com are great resources for anyone doing extemporaneous (non-sterile) or sterile compounding.

    Enjoy!

  • Use of digital pills to measure opioid ingestion [article]

    Here’s an interesting article from the January 13 issue of the Journal of Medical Internet Research (JMIR): Digital Pills To Measure Opioid Ingestion Patterns In Emergency Department Patients With Acute Fracture Pain: A Pilot Study (1)

    A group of researchers out of Boston utilized digital pills (eTectRx, Newbury, FL, USA) to observe the ingestion patterns of oxycodone for patients discharged from the hospital following an acute extremity fracture.

    Eighteen patients met inclusion criteria for the study, but only ten consented and were enrolled. Of the ten, eight had usable data. Not exactly a large number, but you gotta’ start somewhere.

    Study drug was dispensed in capsule form. The digital pill was compounded with oxycodone tablets using a standard capsule-filling machine by the hospital’s investigational drug services pharmacy. Compounded digital pills were dispensed in blister packages.

    When ingested, the gastric chloride ion gradient in the stomach activates the digital pill, transmitting a unique radiofrequency signal that is captured by a hip-worn receiver. The ingestion data is then transmitted to a cloud-based server where it can be viewed and analyzed. Because each digital pill emits a unique frequency, the system can record multiple simultaneous ingestion events, which is very cool.

    It turns out that the digital pill did a pretty good job of recording the patient’s ingestion of their pain meds. It wasn’t perfect, and they had some technological issues along the way, but overall it results look promising. Imagine being able to see how your patients are taking their medication in real-time. You could even use the data coming from the digital pill to determine if a patient had ingested too many capsules at once.

    The use of digital pills definitely has potential.

    From the abstract:

    Results: We recruited 10 study participants and recorded 96 ingestion events (87.3%, 96/110 accuracy). Study participants reported being able to operate all aspects of the digital pill system after their training. Two participants stopped using the digital pill, reporting they were in too much pain to focus on the novel technology. The digital pill system detected multiple simultaneous ingestion events by the digital pill system. Participants ingested a mean 8 (SD 5) digital pills during the study period and four participants continued on opioids at the end of the study period. After interacting with the digital pill system in the real world, participants found the system highly acceptable (80%, 8/10) and reported a willingness to continue to use a digital pill to improve medication adherence monitoring (90%, 9/10).

    Conclusions: The digital pill is a feasible method to measure real-time opioid ingestion patterns in individuals with acute pain and to develop real-time interventions if opioid abuse is detected. Deploying digital pills is possible through the ED with a short instructional course. Patients who used the digital pill accepted the technology.


    1. Chai, Peter R et al. “Digital Pills To Measure Opioid Ingestion Patterns In Emergency Department Patients With Acute Fracture Pain: A Pilot Study”. Journal of Medical Internet Research1 (2017): e19.
  • Someone please disrupt controlled substance storage technologies

    Management of controlled substances(1) inside acute care pharmacies is a mess. It’s difficult for me to stress how utterly disappointed I am by this area of pharmacy technology.

    • The technology has been around for a long time. The controlled substance area of the pharmacy was one of the first areas to start using technology as part of routine medication distribution.
    • More pharmacies use technology to manage controlled substances than any other area of the pharmacy. It’s probably considered “best practice” to use technology in this area of the pharmacy.
    • There’s a fair amount of technology being used to deal with controlled substances: inventory management software, barcode scanning, biometrics, analytics and reports, remote access refrigeration and “vaults”.
    • It’s the worst technology in the pharmacy, hands down.

    I haven’t been in a pharmacy in years that wasn’t using technology to manage these drugs. This is likely due to the amount of fear and regulation swirling around controlled substances. These drugs have the highest level of control and are more regulated than any other drug class; at least until USP <800> goes live. The paranoia around these medications is crazy. The man hours dedicated to their management is obscene.

    Based on my observations, the technology is outdated, difficult to use, and has failed to improve the process in any appreciable way. It remains unclear to me what advantage these systems offer. I don’t think it would be difficult for someone to argue in favor of ditching the technology in lieu of replacing it with two people locked inside a room using pen and paper. Crud, it might even be more efficient.

    Consider that in a majority of instances the inventory management system used to manage controlled substances is separate from the system used for other inventory, and almost never tied directly to the EHR. Yes, it means you have to maintain a separate database for one area within the pharmacy.

    Also consider that at least one of the major players in this area cannot handle partial doses, i.e. half-tablets or increments of mL’s. That’s right, software designed to keep detailed records for controlled medications chokes on something as simple as 7.5 mL.

    This is an area of the pharmacy that needs an enema. Someone out there must have a better way. If you have any ideas, please give them up.

    And for the companies playing in this space, you really need to do a better job. Go sit in a pharmacy for a day or two and observe how utterly terrible these systems are to use.

    ——————-

    1. The term ”controlled substance” means a drug or other substance, or immediate precursor, included in schedule I, II, III, IV, or V of part B of the Controlled Substances Act http://www.fda.gov/regulatoryinformation/legislation/ucm148726.htm . This includes medications like morphine, fentanyl, hydromorphone, etc.
  • JerryFahrni.com Podcast | Episode 14: Update from ASA 2016

    Show Notes:
    Host: Jerry Fahnri, Pharm.D.

    Just a quick update from Jerry’s visit to Chicago for ANESTHESIOLOGY 2016, October 22-25, 2016.

    Items discussed in podcast:
    Intelliguard Linked Visibility Inventory System (LVIS)
    BD Intelliport (I’ve written about this before here)
    Codonics
    ePosters

    Current setup:
    Blue Microphones Yeti USB Microphone – Blackout Edition
    Dragonpad Pop Filter
    Sony MDR-V150 Headphones

  • JerryFahrni.com Podcast | Episode 13: HCP Chicago

     

    Show Notes:
    Host: Jerry Fahnri, Pharm.D.

    This is actually Episode 13. My apologies, but the volume is very low for some reason.

    A brief discussion of Jerry’s presentation at Health Connect Partners (HCP) in Chicago on October 18, 2016, followed by a brief overview of some of the products he saw while at the conference.

    Items discussed in podcast:
    Swisslog
    BD Cato
    DoseEdge
    MEPS Real-Time Inc Intelliguard LVIS

    Current setup:
    Blue Microphones Yeti USB Microphone – Blackout Edition
    Dragonpad Pop Filter
    Sony MDR-V150 Headphones

  • Does tall man lettering work?

    First of all, is it tall man, tall-man, or tallman? And why is it called “tall man lettering” when none of the letters are actually taller than the others? Heck if I know. Just more questions in a mountain of questions piling up around tallMAN lettering.

    Pharmacy Practice News: “[The study] found that there hasn’t been a substantial drop in drug name mix-ups since use of tall man lettering became widespread around 2007… “We saw no reassuring trend of declining rates of errors,” said study author Chris Feudtner, MD, PhD, MPH, a pediatrician at the University of Pennsylvania’s Perelman School of Medicine, in Philadelphia…If tall man lettering were working, the researchers expected to see a significant decrease in these types of errors after 2007 when the JC began recommending that hospitals implement tall man lettering and other typographic drug safety measures. No such drop was seen.”

    The entire use of TaLlMaN lettering has always seemed odd to me. I could never understand how it would keep anyone from grabbing the wrong medication. I mean seriously, who in their right mind would confuse SUMAtriptan with ZOLMitriptan, or ARIPiprazole with RABEprazole. Crud, they’re not even remotely close when one considers the alphabet. When searching for the drug within a CPOE system one types “sum…” or “zol…”, not “…triptan. C’mon, people!

    One classic mix up is hydrOXYzine and hydrALAzine. They definitely have similar names, but the former is an antihistamine used to treat itching, while the latter lowers blood pressure by exerting a vasodilating effect through a direct relaxation of vascular smooth muscle, i.e. it’s a blood pressure medication. Why the heck would anyone want to use a blood pressure medication to treat itching? They wouldn’t.

    Perhaps it would make more sense to simply put the drug class or use on the packaging. You know, hydroxyzine [antihistamine/itching] or hydralazine [vasodilator/blood pressure]. Better yet, let’s require prescribers to place an indication on all orders: hydroxyzine 25mg PO Q6H PRN ITCHING versus hydralazine 25mg PO Q6H FOR BLOOD PRESSURE. Might even be educational for some prescribers.(1)

    How about we spend a little time creating smart EHR’s that know when something is amiss?(2) A system that won’t let the provider select a medication for an inappropriate indication without jumping through some hoops. Something like “You sure about this, bruh? Hydralazine isn’t typically used for itching. Were you trying to prescribe hydroxyzine?”(3)

    Now combine smart prescribing practices like those above with safety measures in the pharmacy like barcode scanning for verification. Selecting the wrong medication in the pharmacy is always possible and happens for a host of reasons, regardless of t.a.l.l.m.a.n lettering. Barcode scanning is a pretty good way to help ensure that you have the prescribed medication in hand.

    Overall, I’m not surprised that T-A-L-L-M-A-N lettering didn’t make much of a difference in the study. Even though it’s become a standard of practice, I don’t know that I’ve ever bought into it. My preference would be to use better technology with a little common sense.

    If you’re interested in reading the article (BMJ Qual Saf 2016;25[4]:213-217; BMJ Qual Saf 2015 Dec 16. [Epub ahead of print]), it can be found here.

     

    —–

    (1)    You might be surprised to find out how little some practitioners know about the medications they prescribe. I constantly appalled by the prescribing practices that I see in the acute care setting.

    (2)    Something like AI or ML, perhaps. Hmm…

    (3)    That’s kind of how the call goes when you have to let a prescriber know they may have inadvertently selected the wrong drug.

  • Can “a computer” take over for a pharmacist?

    Two things happened to me recently that have pushed this question to the front of my mind.

    IBM_Watson

    The first is by way of some comments that were left in response to something I wrote in June about Google’s new symptom search. The comment is as follows:

    “...I have to question your closing statement: The idea of such a vast amount of knowledge at one’s fingertips is mind boggling, to say the least. Google, like any reference, has “information”, but I’m not sure if I would classify it as a “vast amount of knowledge”. Actually, knowledge on the part of the reader is what is required to make sense of the information that a source like this provides. The ability to interpret drug literatures only comes with education, training, and experience…

    The second item comes from a Reddit thread that I got involved with a few days ago. In the thread a user asks whether or not a pharmacist could be replaced “by a computer” in another 20 years. I argued that it could certainly happen. Someone countered by saying that it couldn’t happen because “the evaluation side, the interpretation of a patient, taking it’s [sic] history into account” couldn’t be done by decision-making software.

    Depending on which side of the fence you’re on, there is potential for some good discussion here.

    As I see it, information by itself holds little value. Having the skills to apply information to a given situation, i.e. “having knowledge”* makes all the difference in the world. Many think that it is this that makes humans indispensable in certain roles, like pharmacists. However, don’t be too quick to dismiss the ability of artificial intelligence (AI) and machine learning (ML) to mimic the actions of a human, especially in healthcare. Both AI and ML are powerful tools that can be used to appropriately apply information to any given situation. If a piece of software is able to use ML and AI to apply information to a situation based on past experience, doesn’t this become “knowledge”? I think it does.

    This is what pharmacists do throughout their career – take what they’ve learned, add it to what they’ve experienced, and apply it to a given situation – and why seasoned veterans are so valuable. It’s not that they’re smarter than their younger counterparts; it’s that they’ve been around longer and seen more. The knowledge gained by veteran pharmacists is often the difference between making average decisions and making great decisions. As pharmacists practice, they gain more knowledge.  As time goes by it becomes increasingly rare to see new situations. I’m sure that computers can take information and combine it with previous actions and outcomes to make decisions. They do it all the time.

    Not all knowledge requires depth of logic and “freedom of thought”. Take for example a pharmacist that gains knowledge by reading through a new set of treatment guidelines, or a journal article, or by attending a conference lecture. After digesting the information – use drug x in this situation – the pharmacist is ready to apply it. This is one of the things that make pharmacists better as clinicians over time, i.e. learning new things from others. Can’t a computer use the same information and be given parameters from which to apply it? Sure. How is that different from a human pharmacist? On the surface it’s not.

    So while I understand the desire for pharmacists to push back on the idea of being taken over by computers, I fundamentally disagree. I believe that 80% of what pharmacists do right now could be successfully emulated by a combination of technologies. Decisions made by pharmacists rarely require some special power of observation. Most are actually pretty cut and dry. What about those times that require a judgement call? That’s the other 20%. And while I think you need a pharmacist to make those calls today, I don’t think it will be long before technology can do the same thing. After all, most judgment calls are simply something learned plus experience. Computers may not be able to think on their own, but they can certainly take information, search for a previous encounter, and “make a decision”.

    Obviously this is just my opinion, take it for what it’s worth.

    ——————————-
    *one definition of knowledge – “facts, information, and skills acquired by a person through experience or education; the theoretical or practical understanding of a subject.”

  • ISMP releases new medication safety best practices document

    I quite literally stumbled across this the other day while doing research for another project. I heard that ISMP had updated their best practices document, but didn’t see an official announcement. It’s possible I just missed it.

    ISMP_Best_Practices

    The document contains some great new safety recommendations. All in all there are eleven best practices listed. Most of the recommendations are what I would consider minor, but there are a couple that I think are worth highlighting:

    Dispensing vinCRIStine in a minibag instead of a syringe. This is one of those ideas that seems so simple, yet brilliant. When you read it, you instantly say to yourself “why didn’t I think of that?”. VinCRIStine is commonly dispenses in a syringe and given via short IV push. However, being dispensed in a syringe has led to the accidental administration of the drug via the intrathecal route. The result is devastating neurological damage, up to and including death. By simply putting the drug in a minibag, you effectively eliminate the possibility of it being administered intrathecally.

    Performing independent verification of ingredients during sterile compounding. This includes a recommendation to use technology to “assist in the verification process (e.g., barcode scanning verification of ingredients, gravimetric verification, robotics, IV workflow software) to augment the manual processes.” I believe this is the first official document from an organization to include such a recommendation. Congratulations to ISMP for having the resolve to do this. ASHP needs to follow suite.

    More information can be found here: 2016-2017 Targeted Medication Safety Best Practices for Hospitals [PDF]

  • Deactivation, Decontamination, Cleaning, and Disinfection of sterile HD compounding areas

    USP <800> has an entire section dedicated to deactivation, decontamination, cleaning, and disinfecting areas that are used for compounding sterile hazardous drugs (HDs).

    The chapter calls for:

    • Establishing written procedures
    • Training personnel
    • Using appropriate personal protective equipment (PPE) resistant to cleaning agents. This includes the use of two pairs of chemo gloves and impermeable disposable gowns
    • Using eye protection and face shields required if splashing is likely
    • Using respiratory protection if warranted
    • Using wetted wipes and not spray bottles to deliver agents for deactivation, decontamination, and cleaning
    • Proper disposal of all materials used

    Deactivation – Renders the compound inert or inactive. Residue from deactivation must be removed through decontamination (see below). There is no single method for deactivating all known compounds.

    Decontamination – Inactivating, neutralizing, or physically removing HD residue from non-disposable surfaces via wipes, pads or towels. This includes work surfaces and under work trays where residue may collect.

    Cleaning – Process to remove contaminants – organic and inorganic material – from objects and surfaces using water, detergents, surfactants, solvents, and/or other chemicals. Cleaning may not be performed while compounding activities are occurring.

    Disinfection – Process of inhibiting or destroying microorganisms. Required for surfaces where sterile compounding occurs.

    Most of the above is common sense. While it may seem complicated, most pharmacies will simply purchase kits designed to walk them through the process. An example of a kit used to meet USP <800> requirements is WipeDown 1-2-3 by Valtek Associates. I’m sure there are others as well.

    The WipeDown 1-2-3 product description can be seen below. Notice that the kit contains numbered packets designed to walk you through the process, i.e. Packet #1 – deactivation, Packet #2 – decontamination, Packet #3 – disinfecting/cleaning. Pretty straightforward.

    WipeDown 1-2-3 is a sterile 3 step application wipe kit, that when used in sequence, provides deactivation, decontamination, and disinfection/cleaning of sterile compounding surfaces from most hazardous drugs. WipeDown 1-2-3 satisfies both USP compounding sterile preparations and USP hazardous drugs – handling in healthcare settings.
    Each Sterile WipeDown 1-2-3 kit includes:

    • Packet #1 – HYPO-CHLOR®, 5.25% Sodium Hypochlorite for deactivation
    • Packet #2 – THIO-WIPE, 2% USP Thiosulfate for decontamination
    • Packet #3 – ALCOH-WIPE®, 70% USP Isopropyl Alcohol for disinfecting/cleaning
  • Microneedle patch for monitoring drug levels

    Medgadget: “A collaboration between researchers at the University of British Columbia and Paul Scherrer Institut in Switzerland has developed a microneedle device for drug monitoring. The device is in a form of a patch that’s stuck onto the skin, painlessly pushing microneedles through to sample the interstitial fluid…The proof-of-concept device reported by the team was used to measure the concentration of vancomycin.”

    microneedle-optofluidic biosensor

    This is something that has been sorely needed for a long time. As a pharmacist, I can confidently state that we spend entirely too much time looking at drug levels that are within normal limits versus evaluating those that are not. It would seem much more efficient, at least in the acute care environment, to ignore “normal” levels and spend our time investigating those that are out of whack.

    In the outpatient environment this makes even more sense as a patient safety measure. Imagine never again having a patient urgently admitted to the hospital for a drug level that’s way too high. Think of all the medications that require at least intermittent drug levels: carbamazepine, phenytoin, digoxin, tacrolimus, and so on.

    Side note, my mother was taking tacrolimus around the time of her liver transplant. An EHR charting error occurred that resulted in her receiving 10 mg orally twice a day instead of 1 mg orally twice a day; yep, a 10-fold error. True story. Almost killed her. The small-town hospital where she lived didn’t recognize the symptoms and failed to get a drug level when she was admitted for “dehydration”. Several days of pleading with physicians and calls to UCSF resulted in a level being drawn. It was off the charts. She was subsequently transferred to UCSF where she spent the next six weeks in the ICU. The entire ordeal could have been avoided with real-time drug monitoring. Just sayin’.