Tag: IV ROOM

  • JerryFahrni.com Podcast | Episode 13: HCP Chicago

     

    Show Notes:
    Host: Jerry Fahnri, Pharm.D.

    This is actually Episode 13. My apologies, but the volume is very low for some reason.

    A brief discussion of Jerry’s presentation at Health Connect Partners (HCP) in Chicago on October 18, 2016, followed by a brief overview of some of the products he saw while at the conference.

    Items discussed in podcast:
    Swisslog
    BD Cato
    DoseEdge
    MEPS Real-Time Inc Intelliguard LVIS

    Current setup:
    Blue Microphones Yeti USB Microphone – Blackout Edition
    Dragonpad Pop Filter
    Sony MDR-V150 Headphones

  • ISMP releases new medication safety best practices document

    I quite literally stumbled across this the other day while doing research for another project. I heard that ISMP had updated their best practices document, but didn’t see an official announcement. It’s possible I just missed it.

    ISMP_Best_Practices

    The document contains some great new safety recommendations. All in all there are eleven best practices listed. Most of the recommendations are what I would consider minor, but there are a couple that I think are worth highlighting:

    Dispensing vinCRIStine in a minibag instead of a syringe. This is one of those ideas that seems so simple, yet brilliant. When you read it, you instantly say to yourself “why didn’t I think of that?”. VinCRIStine is commonly dispenses in a syringe and given via short IV push. However, being dispensed in a syringe has led to the accidental administration of the drug via the intrathecal route. The result is devastating neurological damage, up to and including death. By simply putting the drug in a minibag, you effectively eliminate the possibility of it being administered intrathecally.

    Performing independent verification of ingredients during sterile compounding. This includes a recommendation to use technology to “assist in the verification process (e.g., barcode scanning verification of ingredients, gravimetric verification, robotics, IV workflow software) to augment the manual processes.” I believe this is the first official document from an organization to include such a recommendation. Congratulations to ISMP for having the resolve to do this. ASHP needs to follow suite.

    More information can be found here: 2016-2017 Targeted Medication Safety Best Practices for Hospitals [PDF]

  • Deactivation, Decontamination, Cleaning, and Disinfection of sterile HD compounding areas

    USP <800> has an entire section dedicated to deactivation, decontamination, cleaning, and disinfecting areas that are used for compounding sterile hazardous drugs (HDs).

    The chapter calls for:

    • Establishing written procedures
    • Training personnel
    • Using appropriate personal protective equipment (PPE) resistant to cleaning agents. This includes the use of two pairs of chemo gloves and impermeable disposable gowns
    • Using eye protection and face shields required if splashing is likely
    • Using respiratory protection if warranted
    • Using wetted wipes and not spray bottles to deliver agents for deactivation, decontamination, and cleaning
    • Proper disposal of all materials used

    Deactivation – Renders the compound inert or inactive. Residue from deactivation must be removed through decontamination (see below). There is no single method for deactivating all known compounds.

    Decontamination – Inactivating, neutralizing, or physically removing HD residue from non-disposable surfaces via wipes, pads or towels. This includes work surfaces and under work trays where residue may collect.

    Cleaning – Process to remove contaminants – organic and inorganic material – from objects and surfaces using water, detergents, surfactants, solvents, and/or other chemicals. Cleaning may not be performed while compounding activities are occurring.

    Disinfection – Process of inhibiting or destroying microorganisms. Required for surfaces where sterile compounding occurs.

    Most of the above is common sense. While it may seem complicated, most pharmacies will simply purchase kits designed to walk them through the process. An example of a kit used to meet USP <800> requirements is WipeDown 1-2-3 by Valtek Associates. I’m sure there are others as well.

    The WipeDown 1-2-3 product description can be seen below. Notice that the kit contains numbered packets designed to walk you through the process, i.e. Packet #1 – deactivation, Packet #2 – decontamination, Packet #3 – disinfecting/cleaning. Pretty straightforward.

    WipeDown 1-2-3 is a sterile 3 step application wipe kit, that when used in sequence, provides deactivation, decontamination, and disinfection/cleaning of sterile compounding surfaces from most hazardous drugs. WipeDown 1-2-3 satisfies both USP compounding sterile preparations and USP hazardous drugs – handling in healthcare settings.
    Each Sterile WipeDown 1-2-3 kit includes:

    • Packet #1 – HYPO-CHLOR®, 5.25% Sodium Hypochlorite for deactivation
    • Packet #2 – THIO-WIPE, 2% USP Thiosulfate for decontamination
    • Packet #3 – ALCOH-WIPE®, 70% USP Isopropyl Alcohol for disinfecting/cleaning
  • Cool technology for pharmacy – Formulary Toolkit

    Omnicell has been busy developing the IV automation and technology that they acquired from Aeysnt. Honestly, a couple of years ago I was ready to write off Aesynt’s presence in the IV room because of their tiny market share. This is when their current IV room products were still part of Health Robotics. With that said, the IV group has effectively reinvented themselves over the past couple of years and are doing some really neat stuff.

    Two developments that I’m particularly excited about are REINVENT and Formulary Toolkit (FTK). I’ve written about REINVENT several times already, most recently just 6 days ago. I’ve mentioned FTK a couple of times in passing but have never really understood what it was, until now.

    FTK

    Aesynt website: “Said John Barickman, senior executive IV pharmacist consultant at Aesynt.  “With the Formulary Toolkit, we can now offer pharmacies data and services to better leverage automation technology and enable best practices in pharmacy like beyond use dating.”… Formulary Toolkit provides cost-effective access to cGMP quality gravity and drug stability data, in combination with established robust sterility protocols and testing services, that can be utilized to extend beyond use dates for compounded sterile preparations.”

    Basically, Omnicell (previously Aesynt) has taken it upon themselves to do CSP stability testing for a select group of drugs. They do this to offer extended beyond use dating (BUD) for sterile compounds. Why would they do that? Sit back and I’ll tell you.

    The BUD for a CSP identifies the time by which the preparation – once mixed – must be used before it is at risk for chemical degradation, contamination, and permeability of the packaging. In the absence of direct sterility and stability testing evidence that supports longer BUDs, USP <797> currently states that low-risk CSPs are good at controlled room temperature for 48 hours, at cold temperature (refrigerated) for 14 days, and frozen for 45 days. For medium-risk compounds, BUDs are 30 hours, 9 days, and 45 days, respectively.

    Given appropriate stability and sterility testing, BUDs can be extended, giving a hospital the ability to plan further ahead, reduce waste, and better allocate resources. FTK takes care of the stability testing, giving pharmacies one important piece of the puzzle they need to create large batches with extended BUDs. Once extended BUDs have been established by laboratory testing, facilities have only to test batches for sterility.

    So let’s say your pharmacy services several facilities in your healthcare system and uses a ton of vancomycin 1250 mg in 250 mL D5W [Baxter bags]. According to USP <797> you can get 14 days in the refrigerator or 48 hours at room temperature. However, what if stability studies demonstrated that the same CSPs were stable for 90 days at room temperature? You would be able to make significantly larger batches. Prior to using the batch, it would need to be quarantined while sterility testing was performed, which usually takes a couple of weeks. But, when the sample returned negative results, the batch could be used for the remainder of the 90 days, effectively extending the BUD by more than four-fold. This is such an advantage for pharmacies that must prepare frequent, large batches of specific drugs.

    I don’t know what drugs have been tested for inclusion in FTK, but I’ve been told that data for several drugs in currently available and more are being added each quarter. Very cool.

  • Increased IV production means increased automation…and data

    Interesting timing on this article at Healthcare IT News: “With an eye on improving safety, increasing compliance and reducing waste, an increasing number of hospitals and health systems are looking to insource and automate their IV compounding processes… Campbell said that the transition to robotic sterile compounding has resulted in a cost savings of $100,000…At the core of the technology is Omnicell’s REINVENT – Registry for Intravenous Technology in Pharmacy – global, multi-site data registry designed to collect compounded sterile preparation data from hospitals and health systems for evaluation, analysis and insight.”

    I spent some time earlier this week speaking with Omnicell about their IV room automation and technology, including REINVENT. I’ve written about REINVENT before. Since that time, Omnicell has made big strides in connecting customers and collecting sterile compounding data.

    It is my belief that most companies in this space fail to understand the value of all the data floating around in pharmacies. There is so much untapped potential there. Few vendors have given serious consideration to how best to deal with it, much less create a product that brings value to their customers. I’m pretty stoked about what Omnicell is doing with REINVENT and hope that other vendors will follow their lead. The future of pharmacies is in the data.

  • Surface sampling for equipment used for preparing sterile HDs

    USP Chapter <800> HAZARDOUS DRUGS—HANDLING IN HEALTHCARE SETTINGS is organized into the following main sections:

    1. Introduction and Scope
    2. List of Hazardous Drugs
    3. Types of Exposure
    4. Responsibilities of Personnel Handling Hazardous Drugs
    5. Facilities and Engineering Controls
    6. Environmental Quality and Control
    7. Personal Protective Equipment
    8. Hazard Communication Program
    9. Personnel Training
    10. Receiving
    11. Labeling, Packaging, Transport, and Disposal
    12. Dispensing Final Dosage Forms
    13. Compounding
    14. Administering
    15. Deactivating, Decontaminating, Cleaning, and Disinfecting
    16. Spill Control
    17. Documentation and Standard Operating Procedures
    18. Medical Surveillance

    And of course the glossary and appendices.

    Section 6 – Environmental Quality and Control covers wipe sampling for HD surfaces. According to Section 6, wipe sampling of HD surfaces should be performed initially to establish a baseline/benchmark and then at least every 6 months, or more often as needed, to verify containment.

    Areas that should be sampled include:

    • Interior of the C-PEC and equipment contained in it
    • Pass-through chambers
    • Surfaces in staging or work areas near the C-PEC
    • Areas adjacent to C-PECs (e.g., floors directly under C-PEC, staging, and dispensing area)
    • Areas immediately outside the HD buffer room or the C-SCA
    • Patient administration areas

    Emphasis is mine.

    For the interior of C-PECs and equipment contained in it, that means that pharmacies using an IV robot or IV workflow management system (IVWMS) for sterile HD compounding must sample inside the robot as well as all the hardware tied to the IVWMS. This includes cameras, scales, barcode scanners, and even touchscreen computers both inside and adjacent to the hood. I don’t think most pharmacies are doing this.

    As far as pass-through chambers go, this includes refrigerators and dual-sided carousels attached to HD compounding areas. Again, I don’t think most pharmacies are doing this.

    There is currently no standard for acceptable limits for HD surface contamination. However, USP <800> lists the following common marker HDs that can be assayed: cyclophosphamide, ifosfamide, methotrexate, fluorouracil, and platinum-containing drugs. I don’t think I’ve ever been in a hospital pharmacy larger than 100 beds that doesn’t have a patient receiving at least one of thsse drugs.

    If any measurable contamination is found, the facility must identify, document, contain the cause of contamination, and come up with a way to fix it, which may include something as simple as re-evaluating work practices, re-training personnel, performing thorough deactivation, decontamination, and cleaning, or something as difficult as improving engineering controls, i.e. hoods and buffer rooms.

    So remember folks, make sure you’re performing appropriate surface sampling on your technology in and around your hoods.

  • The scope of IV room errors

    There’s an interesting article in Pharmacy Practice News this month (In the IV Room, Robots Come to the Rescue). While the title of the article is a bit misleading – I think ‘rescue’ is a bit strong – it does contain quite a bit of good information.

    The article discusses some of the technology being used at Brigham and Women’s Hospital (BWH) in Boston, and the University of California, San Francisco (UCSF) Mission Bay pharmacy. I’ve been in both pharmacies. BWH and UCSF both make extensive use of technology, but believe me when I say that they have very different approaches. Anyway, the article is worth a few minutes of your time.

    Deep in the article, the author, Rajiv Leventhal spends a few paragraphs discussing the scope of the problem in the IV room, and some of the challenges of using robotics. Rajiv acknowledges that the iv room is a dangerous place for a host of reasons.

    Regardless of the technology chosen, the need to automate IV compounding to at least some degree is hard to dispute, given the relatively high rate of errors that occur when technology is limited. In 1997, when many of the recent advances in robotics were not available, the error rate for IV compounding was 9%—or one mistake in every 11 medications coming out of the IV room.

    As for the main cases [sic] of those errors, many factors have been identified, including sterility and other drug safety issues, according to a safety alert released last year by the Institute for Safe Medication Practices. The alert identified five core causes: 1) depreciating importance of the compounding and dispensing processes in pharmacy practice; 2) lack of knowledge and standardization around best practices; 3) training based on traditions handed down from one pharmacist to the next; 4) learned workplace tolerance of risk and routine practice deviations that persist; and 5) a reluctance to learn from the mistakes of others.

    It seems intuitively obvious that the use of technologies like iv workflow management software, barcode scanning, gravimetrics, imaging, and even robotics can potentially decrease errors described in the article referenced above (Am J Health Syst Pharm1997;54[8]:904-912 ). However, of the causes identified in the second paragraph, only #2 can really be addressed with the use of technology alone. The rest of the items listed are symptoms of a deep-seeded problem growing in pharmacies today, and that is the failure to understand the need for our profession to provide patients with medications in the most efficient, safe, and economical way possible. Sounds ridiculous, I know, but it’s true nonetheless.

    Most (all?) pharmacies I visit these days tout initiatives to improve patient care through increased ‘clinical activities’ of pharmacists, including electronic chart review, ADE follow-up, rounding with the medical team, monitoring and adjusting medications, antibiotic stewardship, and so on. However, I rarely, if ever hear directors talk about efforts to improve operations through streamlined processes, automation and technology, standardization, and heaven forbid, increased use of technicians and non-pharmacist personnel.

    Examples of this can be found within open job listings at various healthcare systems. Recently I visited an acute care pharmacy with a large budget for several open ‘clinical pharmacist’s positions’ but no budget for improving operations or automating processes. In this particular case, a fraction of the money being allocated for open clinical pharmacist positions could be used to make significant improvements to the medication distribution process.

    It’s an interesting dilemma for pharmacy directors. While spending tens of thousands of dollars on automation and technology to improve operations may not seem sexy, it goes without saying that a vast majority of care for a hospitalized patient involves getting the right drug at the right time. A majority of that falls to nursing staff, but the pharmacy owns a piece of the medication distribution/administration process. Nurses can’t administer medications if they’re not readily available, or wrong.

    Regardless of what direction the profession wants to go, it is important that we understand that pharmacy is, at this time, tied to distribution. We must find ways to extricate ourselves from the medication distribution process first before we can begin to truly realize the benefits of pharmacists in patient care. Each time an error occurs for lack of focus, training, or sheer disinterest, the profession suffers. Preventable medication errors involving the pharmacy causes both the public and other healthcare practitioners to lose trust in our ability to get the job done. It’s difficult to recover from lack of trust. Think about it.

  • USP Chapter <800> Terminology

    USP <800> Hazardous Drugs – Handling In Healthcare Settings introduces not only new rules around hazardous drug compounding, but some new terminology/vocabulary as well. Most of the terminology doesn’t address unique items, but rather how items are described when handling hazardous drugs (HDs).

    USP Chapter <800> refers to “containment” primary and secondary engineering controls (C-PECs and C-SECs). Think of C-PECs and C-SECs as the USP Chapter <800> equivalent of PECs and SECs found in USP Chapter <797>.

    C-PECs are commonly referred to as “hoods” and C-SECs are synonymous with “buffer area” or “buffer room”. Simply put, C-SECs are the rooms where C-PECs must be placed to perform sterile HD compounding.

    USP Chapter <800> introduces the concept of a containment segregated compounding are (C-SCA), which is an area where limitations are placed on compounding, such as what type of HD compounding may take place as well as maximum BUDs allowed.

    As USP Chapter <800> covers nonsterile HD compounding as well as sterile compounding, most of you may not be familiar with the concept of a Containment Ventilated Enclosure (CVE).

    When discussing USP Chapter <800> it’s important that we’re all on the same page. Sometimes new terminology can create confusion, so I recommend you educate yourself sooner rather than later.

    Summary: 
    C-PEC (Containment Primary Engineering Control) - A ventilated device designed and operated to minimize worker and environmental exposure to HDs by controlling emissions of airborne contaminants

    C-SEC (Containment Secondary Engineering Control) - The C-SEC is the room in which the C-PEC is placed. It incorporates specific design and operational parameters required to contain the potential hazard within the compounding room, e.g., restricted access, barriers, special construction technique, ventilation, and room pressurization are components of the secondary control strategy

    C-SCA (Containment Segregated Compounding Area) - A type of C-SEC with nominal airflow and room pressurization requirements related to HD compounding. HD compounding in the C-SA is limited for use with a BSC when preparing low- or medium-risk level CSPs with 12-hour or less BUDs, preparing CSPs in a CACI that meets <797> requirements, or preparing non-sterile HDs in a C-PEC.

    CVE (Containment Ventilated Enclosure) - A full of partial enclosure that uses ventilation principles to capture, contain, and remove airborne contaminants (through HEPA filtration) and prevent their release into the work environment.

    Containment Supplemental Engineering Control - Containment Supplemental Engineering Control basically refers to  closed system drug-transfer devices (CSTDs*) and provide adjunct controls to offer an additional level of protection during compounding or administration.

    —————–

    *A closed system drug-transfer device (CSTD) is a device that mechanically prohibits the transfer of environmental contaminants into the system and the escape of hazardous drug or vapor concentrations outside the system. There’s still quite a bit of controversy around the definition of these devices.

  • Cool technology for pharmacy – ProteXsure Safety Capsule System

    Needle sticks happen. I’ve actually stuck myself a few times during my career while compounding in the IV room. Fortunately for me, it never involved anything hazardous. Still, it was a pain. No pun intended.

    Over the years a lot of attention has been given to methods for preventing needle sticks in healthcare, ranging from things like procedures, i.e. “no-recapping” to physical barriers like safety syringes. The ProteXsure Safety Capsule System falls into the latter category.

    ProteXsure

    medGadget: “[The ProteXsure Safety Capsule System] prevents needle stick injuries by offering an easy way to snap on a protective cap to the tip of a needle. Once a syringe is finished with, the needle is simply pushed into a slot on the side of the ProteXsure. This can be done with one hand. A cap immediately grabs onto the needle, readying the syringe for safe disposal.”

    The ProteXsure Safety Capsule System gets high marks for ease of use and design. It appears to be a simple, yet elegant solution to the problem of blunting the end of a needle to prevent accidental sticks. Check the video below to see how simple the product is to use.

     

    From the ProteXsure site:

    • First device to safely address recapping the Front & Back end of all dental syringes
    • Fits all size needles and gauges in most medical and healthcare settings
    • Meets all OSHA guidelines of mandated “One Hand Recapping”
    • Accepts both “Bent & Straight” needles
    • Quick and easy to use
    • Non skid gel pads adhere to any surface without leaving marks or residue
    • 100 safety capsules inside every system
    • Fully automatic (Insert needle and remove)
    • Once completely dispensed, simply dispose in a normal waste bin & replace
    • Additional downstream needle protection should original needle cap come off (capsule covers needle tip in addition to the syringe cap)

    No information on cost and availability in the U.S.

  • JerryFahrni.com Podcast | Episode 12: Pharmacy IV room discussion with Ray Vrabel, PharmD

    Show Notes:
    Host: Jerry Fahnri, Pharm.D.

    Jerry and Ray talk about the pharmacy IV room, specifically where we’ve been, where we’re at, and where we’re headed. Topics include workflow, the impact of USP <797> on pharmacy iv room operations, and thoughts on currently available iv workflow management system technologies.

    You can learn more about Ray at his LinkedIn Profile here.

    Items discussed in podcast:
    Current setup:
    Blue Microphones Yeti USB Microphone – Blackout Edition
    Dragonpad Pop Filter
    Sony MDR-V150 Headphones